A Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems
نویسندگان
چکیده
This paper describes a technique for constructing robust preconditioners for the CGLS method applied to the solution of large and sparse least squares problems. The algorithm computes an incomplete LDLT factorization of the normal equations matrix without the need to form the normal matrix itself. The preconditioner is reliable (pivot breakdowns cannot occur) and has low intermediate storage requirements. Numerical experiments illustrating the performance of the preconditioner are presented. A comparison with incomplete QR preconditioners is also included.
منابع مشابه
A Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems
We analyze and discuss matrix-free and limited-memory preconditioners (LMP) for sparse symmetric positive definite systems and normal equations of large and sparse least-squares problems. The preconditioners are based on a partial Cholesky factorization and can be coupled with a deflation strategy. The construction of the preconditioners requires only matrix-vector products, is breakdown-free, ...
متن کاملOn the Properties of Preconditioners for Robust Linear Regression
In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A ...
متن کاملPreconditioning of Linear Least Squares by Rif for Implicitly Held Normal Equations
The efficient solution of the normal equations corresponding to a large sparse linear least squares problem can be extremely challenging. Robust incomplete factorization (RIF) preconditioners represent one approach that has the important feature of computing an incomplete LLT factorization of the normal equations matrix without having to form the normal matrix itself. The right-looking implemen...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملParallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse preconditioning
Though computational techniques for two-dimensional viscoelastic free surface flows are well developed, three-dimensional flows continue to present significant computational challenges. Fully coupled free surface flow models lead to nonlinear systems whose steady states can be found via Newton’s method. Each Newton iteration requires the solution of a large, sparse linear system, for which memo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2003