A Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems

نویسندگان

  • Michele Benzi
  • Miroslav Tuma
چکیده

This paper describes a technique for constructing robust preconditioners for the CGLS method applied to the solution of large and sparse least squares problems. The algorithm computes an incomplete LDLT factorization of the normal equations matrix without the need to form the normal matrix itself. The preconditioner is reliable (pivot breakdowns cannot occur) and has low intermediate storage requirements. Numerical experiments illustrating the performance of the preconditioner are presented. A comparison with incomplete QR preconditioners is also included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems

We analyze and discuss matrix-free and limited-memory preconditioners (LMP) for sparse symmetric positive definite systems and normal equations of large and sparse least-squares problems. The preconditioners are based on a partial Cholesky factorization and can be coupled with a deflation strategy. The construction of the preconditioners requires only matrix-vector products, is breakdown-free, ...

متن کامل

On the Properties of Preconditioners for Robust Linear Regression

In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A ...

متن کامل

Preconditioning of Linear Least Squares by Rif for Implicitly Held Normal Equations

The efficient solution of the normal equations corresponding to a large sparse linear least squares problem can be extremely challenging. Robust incomplete factorization (RIF) preconditioners represent one approach that has the important feature of computing an incomplete LLT factorization of the normal equations matrix without having to form the normal matrix itself. The right-looking implemen...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Parallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse preconditioning

Though computational techniques for two-dimensional viscoelastic free surface flows are well developed, three-dimensional flows continue to present significant computational challenges. Fully coupled free surface flow models lead to nonlinear systems whose steady states can be found via Newton’s method. Each Newton iteration requires the solution of a large, sparse linear system, for which memo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003